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Al Regulation in Finance

While firm regulations have not yet been finalized, financial regulators worldwide have provided
guidelines and consultations on the responsible use of Artificial Intelligence/Machine Learning (Al/ML).
What have they been saying? What common underlying concerns and regulatory themes are emerging?
What can the industry expect in the coming years, and how can it start responding now?

Timeline of key regulator activity
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Monetary Authority of Hong Kong Monetary Banque De France - National Association Office of the Supdt. of CFPB, OCC, Fed European Commission European Insurance & Bundesbank and EBA - ML in IRB models Bank of England/ FCA
Singapore - Fairness, Authority - High Level = Governance of Al in of Insurance FIs - Tech. Risk Reserve, FDIC, NCUS - - Draft Al law Occupational BaFin - ML in Risk survey - Al Public Private
Ethics, Accountability & Principles on Al Finance Commissioners - Consultation including Use of AI/ML (Credit = high risk Al) Pensions Authority - Al Models ECB - Response to Draft Forum report
Transparency Al guiding principles Al governance EU Al law

Common regulatory themes
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Explainability, Justifiability, Fairness, Customer Transparency Robustness, Accountability
Interpretability Conceptual Soundness Unjust Bias and Recourse Reliability, Stability
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emerging regulatory themes
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Explainability and Interpretability In-depth Insights on Al for Client co-development
Activities with Regulators, Banks, Financial Services
and Government Agencies

@ Global Systemically Important Bank - Standard
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Chartered Bank - uses TruEra for Fairness and
Capture the Al
@ Response to multi-agency consultation and gpp;rtuni;yin Transparency assessments
anking - Re- '_\_/_\
supervision on Al in banking Imagining Model Risk . .
Management @ Banking clients across UK, EU, and the US

@ Multiple engagements on Explainability

B truera | whreesrex B |Insurance clients across Europe and the

B Represented at Al Public Private Responsible Al with Americas

Expert Forum (BOE) E\Tt;:r;ﬂlt:ata e SR : : :

2 Management @ Co-developmentin areas such as: Fair lending

@ Joint working paper on Truera’s PANKCOF ENCLAND assessment (US); customer-facing

explainability technique (BoE) W SN transparency; off-the-shelf fairness reporting

T Faimess in Cregi<Qorng/profing for auditability; and implementing model
® Co-leader of Veritas Industry MAS g j development best practices via TruEra.
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consortium on Al governance

Monetary Authority

( MAS) of Singapore
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TruEra’s product support for regulatory themes

. Explainability and Interpretability
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More accurate, reliable explanations

Faster explanations

Agnostic of the platform used to build the model (including third party models)
Consistency/standardisation within and across data science teams

Different views tailored to different stakeholders

Justifiability and Conceptual Soundness
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Subject matter experts can use TruEra to analyze the relationship between model
behaviour and input features

Automated flagging of unusual feature influences that may require human
investigation

Customer-Facing Transparency, Redress

Customer or transaction-specific explanations

Can be adapted for ‘layman-friendly’ explanations of decisions to

end-customers

Counterfactual explanations
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Accurate, in-depth
understanding of
key drivers behind
model decisions
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by poor data quality
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TruEra’s product support for regulatory themes (continued)

[ ] ] ]
Fairness, Unjust Bias
. Q Mean of model score Wasserstein Distance Mean Difference Population Stability Index

@ Ability to define different ways in which bias or group fairness is measured
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